Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation.

Identifieur interne : 000703 ( Main/Exploration ); précédent : 000702; suivant : 000704

The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation.

Auteurs : Marta A. Uzarska [Allemagne] ; Rafal Dutkiewicz ; Sven-Andreas Freibert ; Roland Lill ; Ulrich Mühlenhoff

Source :

RBID : pubmed:23615440

Descripteurs français

English descriptors

Abstract

The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron-sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S cluster on Isu1 and its transfer to target apoproteins. Here we use in vivo and in vitro approaches to show that Ssq1 also interacts with the monothiol glutaredoxin 5 (Grx5) at a binding site different from that of Isu1. Grx5 binding does not stimulate the ATPase activity of Ssq1 and is most pronounced for the ADP-bound form of Ssq1, which interacts with Isu1 most tightly. The vicinity of Isu1 and Grx5 on the Hsp70 chaperone facilitates rapid Fe/S cluster transfer from Isu1 to Grx5. Grx5 and its bound Fe/S cluster are required for maturation of all cellular Fe/S proteins, regardless of the type of bound Fe/S cofactor and subcellular localization. Hence Grx5 functions as a late-acting component of the core Fe/S cluster (ISC) assembly machinery linking the Fe/S cluster synthesis reaction on Isu1 with late assembly steps involving Fe/S cluster targeting to dedicated apoproteins.

DOI: 10.1091/mbc.E12-09-0644
PubMed: 23615440
PubMed Central: PMC3681689


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation.</title>
<author>
<name sortKey="Uzarska, Marta A" sort="Uzarska, Marta A" uniqKey="Uzarska M" first="Marta A" last="Uzarska">Marta A. Uzarska</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dutkiewicz, Rafal" sort="Dutkiewicz, Rafal" uniqKey="Dutkiewicz R" first="Rafal" last="Dutkiewicz">Rafal Dutkiewicz</name>
</author>
<author>
<name sortKey="Freibert, Sven Andreas" sort="Freibert, Sven Andreas" uniqKey="Freibert S" first="Sven-Andreas" last="Freibert">Sven-Andreas Freibert</name>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23615440</idno>
<idno type="pmid">23615440</idno>
<idno type="doi">10.1091/mbc.E12-09-0644</idno>
<idno type="pmc">PMC3681689</idno>
<idno type="wicri:Area/Main/Corpus">000745</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000745</idno>
<idno type="wicri:Area/Main/Curation">000745</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000745</idno>
<idno type="wicri:Area/Main/Exploration">000745</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation.</title>
<author>
<name sortKey="Uzarska, Marta A" sort="Uzarska, Marta A" uniqKey="Uzarska M" first="Marta A" last="Uzarska">Marta A. Uzarska</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dutkiewicz, Rafal" sort="Dutkiewicz, Rafal" uniqKey="Dutkiewicz R" first="Rafal" last="Dutkiewicz">Rafal Dutkiewicz</name>
</author>
<author>
<name sortKey="Freibert, Sven Andreas" sort="Freibert, Sven Andreas" uniqKey="Freibert S" first="Sven-Andreas" last="Freibert">Sven-Andreas Freibert</name>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Diphosphate (metabolism)</term>
<term>Adenosine Triphosphate (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Cytosol (metabolism)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>HSP70 Heat-Shock Proteins (genetics)</term>
<term>HSP70 Heat-Shock Proteins (metabolism)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Molecular Chaperones (genetics)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADP (métabolisme)</term>
<term>Adénosine triphosphate (métabolisme)</term>
<term>Chaperons moléculaires (génétique)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Cytosol (métabolisme)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du choc thermique HSP70 (génétique)</term>
<term>Protéines du choc thermique HSP70 (métabolisme)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Électrophorèse sur gel de polyacrylamide (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>HSP70 Heat-Shock Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Chaperones</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Diphosphate</term>
<term>Adenosine Triphosphate</term>
<term>Glutaredoxins</term>
<term>HSP70 Heat-Shock Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Chaperones</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du choc thermique HSP70</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADP</term>
<term>Adénosine triphosphate</term>
<term>Chaperons moléculaires</term>
<term>Cytosol</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Mitochondries</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du choc thermique HSP70</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Immunoprecipitation</term>
<term>Mutation</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Immunoprécipitation</term>
<term>Liaison aux protéines</term>
<term>Mutation</term>
<term>Sites de fixation</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron-sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S cluster on Isu1 and its transfer to target apoproteins. Here we use in vivo and in vitro approaches to show that Ssq1 also interacts with the monothiol glutaredoxin 5 (Grx5) at a binding site different from that of Isu1. Grx5 binding does not stimulate the ATPase activity of Ssq1 and is most pronounced for the ADP-bound form of Ssq1, which interacts with Isu1 most tightly. The vicinity of Isu1 and Grx5 on the Hsp70 chaperone facilitates rapid Fe/S cluster transfer from Isu1 to Grx5. Grx5 and its bound Fe/S cluster are required for maturation of all cellular Fe/S proteins, regardless of the type of bound Fe/S cofactor and subcellular localization. Hence Grx5 functions as a late-acting component of the core Fe/S cluster (ISC) assembly machinery linking the Fe/S cluster synthesis reaction on Isu1 with late assembly steps involving Fe/S cluster targeting to dedicated apoproteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23615440</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation.</ArticleTitle>
<Pagination>
<MedlinePgn>1830-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E12-09-0644</ELocationID>
<Abstract>
<AbstractText>The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron-sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S cluster on Isu1 and its transfer to target apoproteins. Here we use in vivo and in vitro approaches to show that Ssq1 also interacts with the monothiol glutaredoxin 5 (Grx5) at a binding site different from that of Isu1. Grx5 binding does not stimulate the ATPase activity of Ssq1 and is most pronounced for the ADP-bound form of Ssq1, which interacts with Isu1 most tightly. The vicinity of Isu1 and Grx5 on the Hsp70 chaperone facilitates rapid Fe/S cluster transfer from Isu1 to Grx5. Grx5 and its bound Fe/S cluster are required for maturation of all cellular Fe/S proteins, regardless of the type of bound Fe/S cofactor and subcellular localization. Hence Grx5 functions as a late-acting component of the core Fe/S cluster (ISC) assembly machinery linking the Fe/S cluster synthesis reaction on Isu1 with late assembly steps involving Fe/S cluster targeting to dedicated apoproteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Uzarska</LastName>
<ForeName>Marta A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dutkiewicz</LastName>
<ForeName>Rafal</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Freibert</LastName>
<ForeName>Sven-Andreas</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lill</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mühlenhoff</LastName>
<ForeName>Ulrich</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C528773">Grx5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018840">HSP70 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C121520">ISU1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C115914">JAC1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C115913">SSQ1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>61D2G4IYVH</RegistryNumber>
<NameOfSubstance UI="D000244">Adenosine Diphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000244" MajorTopicYN="N">Adenosine Diphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018840" MajorTopicYN="N">HSP70 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23615440</ArticleId>
<ArticleId IdType="pii">mbc.E12-09-0644</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E12-09-0644</ArticleId>
<ArticleId IdType="pmc">PMC3681689</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2006 Sep 19;45(37):11087-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:457-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2007;80:261-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17445699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2007 Mar-Apr;42(2):95-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17453917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Med. 2009;41(2):82-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18720092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Dec 2;47(48):12795-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):628-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Nov;29(22):6059-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19752196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Feb 12;392(3):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2010 May;11(5):360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20224575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Jun;8(6):436-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20467446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Jun 22;49(24):4945-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20481466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1823(2):484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Mar 16;417(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Apr;23(7):1157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Sep 19;134(37):15213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Mar;28(5):1851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:669-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Jun 15;474(2):226-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Aug;11(8):579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20651708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2010 Aug;277(16):3353-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 27;285(35):26745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 27;285(35):26737-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Nov 2;49(43):9132-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20873749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e16199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2011;12:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21269500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Mar;18(3):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010;1:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20981028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Apr;16(4):218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21257336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 21;475(7356):324-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21776078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Oct 7;89(4):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Nov 8;50(44):9641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21977977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Nov 11;89(5):656-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22077971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 2;286(48):41205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21987576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;815:241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22130996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Jun 18;27(12):1736-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1050-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2000 Feb;5(1):2-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10766431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 May;20(10):3677-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 12;276(2):1503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2001;65:37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11381604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 26;277(30):27353-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11994302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12138088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 8;278(32):29719-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 26;278(39):37582-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12871959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 2;279(27):28435-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 May 21;35(20):6297-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8639572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 Aug;134(3):603-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8707841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Apr 15;16(8):1842-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9155010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Feb 6;92(3):351-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9476895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Dec;180(24):6617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9852006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2004 Nov;11(11):1084-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 24;279(52):53924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Mar;62(6):670-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15770419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:247-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 12;280(32):28966-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 24;281(12):7801-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16431909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Apr;2(4):171-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 26;281(21):14580-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16551614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Sep;4(9):906-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Aug 22;16(16):1660-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920629</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Giessen</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Marbourg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Dutkiewicz, Rafal" sort="Dutkiewicz, Rafal" uniqKey="Dutkiewicz R" first="Rafal" last="Dutkiewicz">Rafal Dutkiewicz</name>
<name sortKey="Freibert, Sven Andreas" sort="Freibert, Sven Andreas" uniqKey="Freibert S" first="Sven-Andreas" last="Freibert">Sven-Andreas Freibert</name>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</noCountry>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Uzarska, Marta A" sort="Uzarska, Marta A" uniqKey="Uzarska M" first="Marta A" last="Uzarska">Marta A. Uzarska</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000703 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000703 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23615440
   |texte=   The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23615440" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020